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Abstract: Cloud computing allows business customers to scale up and scale down their resource usage based on 

their needs. Many of the gains in the cloud come from resource multiplexing through virtualization technology. In 

this paper, we present a system that uses virtualization technology to allocate data center resources dynamically 

based on application demands and support green computing by optimizing the number of servers in use. We 

develop a set of heuristics that prevent overload in the system effectively while saving the energy. 
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1. INTRODUCTION 

The elasticity and the lack of upfront capital investment offered by cloud computing is appealing to many businesses. This 

is regarding how can a cloud service provider best multiplex its virtual resources onto the physical hardware? This is 

important because much of the touted gains in the cloud model come from such multiplexing. 

Servers in many existing data centers are often severely under-utilized due to over-provisioning for the peak demand. 

Cloud model makes such practice unnecessary by offering automatic scale up and down in response to load variation. 

Besides reducing the hardware cost, it also saves on electricity which contributes to a significant portion of the operational 

expenses in large datacenters.  

In Virtual machine monitors (VMMs) provide a mechanism for mapping virtual machines (VMs) to physical resources. 

This mapping is largely hidden from the cloud users. Users with the Amazon EC2 service we do not know where their 

VM instances run. It is up to the cloud provider to make sure the underlying physical machines have sufficient resources 

to meet their needs. VM live migration technology makes it possible to change the mapping between Virtual Machines 

and Physical Machines while applications are running. This is challenging when the resource needs of VMs are 

heterogeneous due to the diverse set of applications they run and vary with time as the workloads grow and shrink. The 

capacity of PMs can also be heterogeneous. We aim to achieve two goals in our algorithm: 

 Overload avoidance: the capacity of a PM should be sufficient to satisfy the resource needs of all VMs running on it. 

Otherwise, the PM is overloaded and can lead to degraded performance of its VMs. 

 Green computing: the number of PMs used should be minimized as long as they can still satisfy the needs of all VMs. 

Idle PMs can be turned off to save energy. 

There is an inherent trade-off between the two goals in the face of changing resource needs of VMs. For overload 

avoidance, we should keep the utilization of PMs Low to reduce the possibility of overload in case the resource needs of 

VMs increase later. For green computing, we should keep the utilization of PMs reasonably high to make efficient use of 

their energy. 
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2. SYSTEM OVERVIEW 

 
Fig.1 

Each PM runs the Xen hypervisor (VMM) which supports a privileged domain 0 and one or more domain U. Each VM in 

domain U encapsulates one or more applications such as Web server, remote desktop, DNS, Mail, Map/Reduce, etc. We 

assume all PMs Share backend storage. 

The multiplexing of VMs to PMs is managed using the Usher framework. Each node runs an Usher local node manager 

(LNM) on domain 0 which collects the usage statistics of resources for each VM on that node. The CPU and network 

usage can be calculated by monitoring the scheduling events in Xen.  Working set prober (WS Prober) on each hypervisor 

estimates the working set sizes of VMs running on it. The statistics collected at each PM are forwarded to the Usher 

central controller (Usher CTRL) where VM scheduler runs. The VM Scheduler is invoked periodically and receives from 

the LNM the resource demand history of VMs, the capacity and the load history of PMs, and the current layout of VMs on 

PMs. 

The scheduler has several components. The predictor predicts the future resource demands of VMs and the future load of 

PMs based on past statistics. The load of the PM will be computed by aggregating the resource usage of its VMs. The 

LNM at each node first attempts to satisfy the new demands locally by adjusting the resource allocation of VMs sharing 

the same VMM. Xen can change the CPU allocation among the VMs by adjusting their weights in its CPU scheduler. The 

MM Allotter on domain 0 of each node is responsible for adjusting the local memory allocation. The hot spot solver in 

our VM Scheduler detects if the resource utilization of any PM is above the hot threshold. Some VMs running on them 

will be migrated away to reduce their load. The cold spot solver checks if the average utilization of actively used PMs 

(APMs) is below the green computing threshold. If so, some of those PMs could potentially be turned off to save energy. 

It identifies the set of PMs whose utilization is below the cold threshold (i.e., cold spots) and then attempts to migrate 

away all their VMs. It then compiles a migration list of VMs and passes it to the Usher CTRL for execution. 

3. PREDICTING FUTURE RESOURCE NEEDS 

We need to predict the future resource needs of VMs. We need to look inside a VM for application level statistics, by 

parsing logs of pending requests. Doing so requires modification of the VM which may not always be possible. Instead, 

we make our prediction based on the past external behaviors of VMs. Our first attempt was to calculate an exponentially 

weighted moving average (EWMA) using a TCP-like scheme: 

E(t) = α ∗  E(t − 1) + (1 − α) ∗  O(t), 0 ≤ α ≤ 1 

Where E(t) and O(t) are the estimated and the observed load at time t, respectively. _ reflects a tradeoff between stability 

and responsiveness. We use the EWMA formula to predict the CPU load on the DNS server in our university. We 

measure the load every minute and predict the load in the next minute.  

TABLE 1 Load prediction algorithms 

 ewma(0.7) 

W = 1 

fusd(-0.2, 0.7) 

W = 1 

fusd(-0.2, 0.7) 

W=8 

median error 5.6% 9.4% 3.3% 

high error 56% 77% 58% 
low error 44% 23% 41% 
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When α is between 0 and 1, the predicted value is always between the historic value and the observed one. To reflect the 

“acceleration”, we take an innovative approach by setting_ to a negative value. When �1 _ _ < 0, the above formula can 

be transformed into the following: 

E(t)  =  - | α | * E(t-1) + (1 + | α |) * O(t) 

 = O(t) + | α | * (O(t) - E(t-1)) 

On the other hand, when the observed resource usage is going down, we want to be conservative in reducing our 

estimation. Hence, we use two parameters, ↑ α and ↓ α to control how quickly E(t) adapts to changes when O(t) is 

increasing or decreasing, respectively. We call this the FUSD (Fast Up and Slow Down) algorithm. Now the predicted 

values are higher than the observed ones most of the time: 77% according to Table 1. The median error is increased to 

9:4% because we trade accuracy for safety. It is still quite acceptable nevertheless. 

 

 

 
Fig.2. CPU load prediction for the DNS server at our university. W is the measurement window. 
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We compare SPAR(4,2) and FUSD(-0.2,0.7) in figure 3.„lpct‟ refers to the percentage of low errors while „std‟ refers to 

standard deviation. Both algorithms are used to predict the CPU utilization of the aforementioned DNS server in one-day 

duration. The predicting window is eight minute.  

 
Fig.3. Comparison of SPAR and FUSD 

The standard deviation (std) of SPAR (4, 2) is about 16%smaller than that of FUSD (-0.2, 0.7), which means SPAR (4,2) 

achieves slightly better precision. This is because it takes advantage of tiding pattern of the load. However, SPAR(4,2) 

neither avoid low prediction nor smooth the load. The requirement of a training phase to determine parameters is 

inconvenient, especially when the load pattern changes. Therefore we adopt the simpler EWMA variance. Thorough 

investigation on prediction algorithms are left as future work. 

4. THE SKEWNESS ALGORITHM 

The skewness quantifies the un evenness in the utilization of multiple resources on a server. Let n be the number of 

resources we consider and ri be the utilization of the i-th resource. We define the resource skewness of a server p as 

skewness(p) =√∑((ri/ṙ)-1)
2 

Where ṙ is the average utilization of all resources for server p. In practice, not all types of resources are performance 

critical and hence we only need to consider bottleneck resources in the above calculation. By minimizing the skewness, 

we can combine different types of workloads nicely and improve the overall utilization of server resources. 

4.1.  Hot and cold spots 

Our algorithm executes periodically to evaluate the resource allocation status based on the predicted future resource 

demands of VMs. We define a server as a hot spot if the utilization of any of its resources is above a hot threshold. This 

indicates that the server is overloaded and hence some VMs running on it should be migrated away. We define the 

temperature of a hot spot p as the square sum of its resource utilization beyond the hot threshold. 

A server is a cold spot if the utilizations of all its resources are below a cold threshold. This indicates that the server is 

mostly idle and a potential candidate to turn off to save energy. This will be done only when the average resource 

utilization of all actively used servers (i.e., APMs) in the system is below a green computing threshold. A server is 

actively used if it has at least one VM running. Otherwise, it is inactive. Finally, the warm threshold is a level of resource 

utilization that is sufficiently high to justify having the server running but not as high as to risk becoming a hot spot in the 

face of temporary fluctuation of application resource demands. 

4.2. Hot spot mitigation 

This is meant to eliminate all hot spots if possible. Otherwise, keep their temperature as low as possible. For each server 

p, we first decide which of its VMs should be migrated away. We sort its list of VMs based on the resulting temperature 

of the server if that VM is migrated away. We aim to migrate away the VM that can reduce the server‟s temperature the 

most. In case of ties, we select the VM whose removal can reduce the skewness of the server the most. For each VM in 

the list, we see if we can find a destination server to accommodate it. The server must not become a hot spot after 
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accepting this VM. Among all such servers, we select one whose skewness can be reduced the most by accepting this 

VM. Note that this reduction can be negative which means we select the server whose skewness increases the least. If a 

destination server is found, we record the migration of the VM to that server and update the predicted load of related 

servers. Otherwise, we move on to the next VM in the list and try to find a destination server for it. 

4.3. Green computing 

When the resource utilization of active servers is too low, some of them can be turned off to save energy. This is handled 

in green computing algorithm. The challenge here is to reduce the number of active servers during low load without 

sacrificing performance either now or in the future. We need to avoid oscillation in the system.  

Green computing algorithm is invoked when the average utilizations of all resources on active servers are below the green 

computing threshold. We sort the list of cold spots in the system based on the ascending order of their memory size. Since 

we need to migrate away all its VMs before we can shut down an under-utilized server, we define the memory size of a 

cold spot as the aggregate memory size of all VMs running on it. Recall that our model assumes all VMs connect to share 

back-end storage. Hence, the cost of a VM lives migration is determined mostly by its memory footprint. This 

consolidation adds extra load onto the related servers. This is not as serious a problem as in the hot spot mitigation case 

because green computing is initiated only when the load in the system is low 

4.4.  Consolidated movements 

The movements generated in each step above are not executed until all steps have finished. The lists of movements are 

then consolidated so that each VM is moved at most once to its final destination. Hot spot mitigation may dictate a VM to 

move from PM A to PM B, while green computing dictates it to move from PM B to PM C. In the actual execution, the 

VM is moved from A to C directly.  

5. RELATED WORK 

5.1.  Resource allocation at the application level 

Automatic scaling of Web applications was previously studied in for data center environments. In MUSE, each server has 

replicas of all web applications running in the system. The dispatch algorithm in a frontend L7-switch makes sure requests 

are reasonably served while minimizing the number of under-utilized servers. Work uses network flow algorithms to 

allocate the load of an application among its running instances. For connection oriented Internet services like Windows 

Live Messenger, work presents an integrated approach for load dispatching and server provisioning. All works above do 

not use virtual machines and require the applications be structured in a multi-tier architecture with load balancing 

provided through a front-end dispatcher. In contrast, our work targets Amazon EC2-style environment where it places no 

restriction on what and how applications are constructed inside the VMs. A VM is treated like a black box. Resource 

management is done only at the granularity of whole VMs. 

Map Reduce is another type of popular Cloud service where data locality is the key to its performance. Qunicy adopts 

min-cost flow model in task scheduling to maximize data locality while keeping fairness among different jobs. The 

“Delay Scheduling” algorithm trades execution time for data locality. Work assigns dynamic priorities to jobs and users to 

facilitate resource allocation. 
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5.2. Resource allocation by live VM migration 

VM live migration is a widely used technique for dynamic resource allocation in a virtualized environment. Our work also 

belongs to this category. Sandpiper combines multi-dimensional load information into a single Volume metric. It sorts the 

list of PMs based on their volumes and the VMs in each PM in their volume-to-size ratio (VSR). This unfortunately 

abstracts away critical information needed when making the migration decision. It then considers the PMs and the VMs in 

the pre-sorted order. We give a concrete example in Section 1 of the supplementary file where their algorithm selects the 

wrong VM to migrate away during overload and fails to mitigate the hot spot. We also compare our algorithm and theirs 

in real experiment. In addition, their work has no support for green computing and differs from ours in many other aspects 

such as load prediction. 

6. CONCLUSION 

Resource management system for cloud computing system multiplexes virtual to physical resources adaptively based on 

the changing demand. Skewness metric has been used to combine VMs with different resource characteristics 

appropriately so that the capacities of servers are well utilized. This achieves both overload avoidance and green 

computing for systems with multi-resource constraints. 
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